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Introduction
Cancer has become the most serious public health issue in the 
world.1,2 The incidence of digestive tract tumors accounts for 50% 
of all malignant tumors. Although new endoscopic techniques have 
improved the diagnosis and treatment rates for early gastrointestinal 
cancer, most patients with gastrointestinal tumors are diagnosed at 
an advanced stage and have a high mortality rate.3 For these patients, 
medication is often the only option, but it can lead to treatment tol-
erance. While there are many mechanisms involved, the details are 
still unclear. Recent studies have shown that ferroptosis plays a key 
role in tumor suppression and offers new perspectives for tumor 
treatment. Inducing ferroptosis can reverse tumor treatment resist-
ance,4–7 but the mechanisms by which ferroptosis influences treat-
ment resistance remain unclear. This article clarifies the relationship 
between ferroptosis and treatment resistance in various digestive 
tract tumors and explores the connection between ferroptosis-relat-
ed mechanisms and treatment resistance, aiming to provide new re-
search directions for the future treatment of gastrointestinal tumors.

Ferroptosis and tumor treatment resistance
Ferroptosis is a unique form of cell death driven by iron-depend-

ent phospholipid peroxidation. It is regulated by multiple cellular 
processes, including redox balance, iron metabolism, and lipid 
metabolism.8 The primary mechanism of ferroptosis involves the 
peroxidation of polyunsaturated fatty acid-containing phospholip-
ids in the cell membrane under conditions rich in iron, reactive 
oxygen species (ROS), and lipid peroxidation.9,10 The accumula-
tion of lipid peroxides in the cell membrane eventually disrupts 
membrane integrity, leading to cell death. The molecular mecha-
nisms of ferroptosis can be roughly divided into three pathways: 
the deletion or activation of glutathione peroxidase 4 (GPX4), iron 
metabolism, and lipid peroxidation (Fig. 1).11

Tumor cells can significantly enhance their defense against 
oxidative stress by regulating ferroptosis, which leads to treatment 
resistance.12–14 Drug resistance in tumor cells is a major cause of 
cancer treatment failure. Currently, all tumor treatment drugs used in 
clinical practice can induce tumor cell resistance, resulting in tumor 
recurrence, metastasis, and ultimately, patient death. Studies have 
found that tumor resistance is primarily related to the activation 
of endogenous stress relief pathways by oncogenic stressors (e.g., 
starvation, DNA damage, dietary toxins, infection, or cancer ther-
apy).15,16 These pathways enable cells to better cope with stressors 
during development and renewal. Radiation therapy, chemotherapy, 
targeted therapy, and immunotherapy increase oncogenic stress, 
leading to further dependence of cancer cells on stress relief path-
ways. Cancer cells, as well as cells in the tumor microenvironment, 
rapidly adapt to relieve the stress caused by cancer treatments. These 
factors ultimately contribute to the resistance mechanisms of tumor 
treatment and provide new therapeutic targets,17 with ferroptosis 
playing a key role in therapeutic resistance.18 In tumor cell treatment 
resistance, persister cells (PCs) are particularly important.19 PCs 
are tumor cells that survive after several rounds of chemotherapy 
and represent a treatment-resistant state.20 The survival of PCs criti-
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cally depends on GPX4, and the downregulation of GPX4 levels can 
selectively induce ferroptosis in PCs. Additionally, ferroptosis can 
selectively target the unique metabolic and signaling pathways of 
cancer stem cells (CSCs), playing an important role in treatment re-
sistance.21,22 Erastin, an inhibitor of the cystine/glutamate transport-
er (SLC7A11), also known as xCT, is a component of the cystine/
glutamate antitransporter (system Xc-).23 SLC7A11 has a significant 
cytotoxic effect on CSCs and can reduce chemotherapy resistance in 
CSCs.24 Therefore, ferroptosis offers hope for overcoming treatment 
resistance by modulating PCs and CSCs. Numerous studies have 
found that ferroptosis is involved in the treatment resistance of gas-
trointestinal tumors (Table 1).6,9,10,21,24–34 This article will next intro-
duce the relationship between ferroptosis and digestive tract tumors, 
focusing on colorectal cancer, gastric cancer, pancreatic cancer, and 
liver cancer (Fig. 1).11,23,35,36

Ferroptosis and gastric cancer treatment resistance
Studies have found that inducing ferroptosis may be a key strat-
egy to address gastric cancer treatment resistance. ROS interferes 

with the cellular oxidative environment and induces cell death. 
The antioxidant enzyme peroxiredoxin 2 significantly increases 
cell sensitivity to cisplatin treatment by regulating ROS levels.29 
Silva found that resistance to chemotherapy in gastric cancer is 
associated with gene mutations that regulate apoptosis and el-
evated levels of glutathione (a substance that inhibits ferroptosis 
in cells),37 and that ferroptosis inducers (FINS) can help overcome 
this resistance.30 Another potential target for gastric cancer treat-
ment is to block the ROS-activated general control nonderepress-
ible 2 (GCN2)-eukaryotic initiation factor 2α subunit (eIF2α)- 
activation transcription factor 4 (ATF4)-xCT pathway, which 
causes mitochondrial dysfunction and enhances cisplatin toler-
ance.29 Sorafenib, a tyrosine kinase inhibitor, plays an important 
anti-tumor role in gastric cancer as a FINS. Activating transcrip-
tion factor 2 (ATF2), a member of the ATF/CREB transcription 
factor family, is associated with various cancer-related biologi-
cal functions. Studies have shown that ATF2 is activated during 
sorafenib-induced ferroptosis in gastric cancer cells. ATF2 knock-
down promotes sorafenib-induced ferroptosis, whereas ATF2 
overexpression shows the opposite effect in gastric cancer cells. 

Fig. 1. The mechanism of gastrointestinal tumors involved in the ferroptosis pathway. ① Antioxidant pathway: Cysteine is imported into cells to synthesize 
GSH through the SLC7A11/SLC3A2 complex. GPX4 uses GSH as a substrate to reduce membrane phospholipid hydroperoxides to harmless lipid alcohols, 
thereby preventing the accumulation of lethal lipid ROS and inhibiting ferroptosis. ② Lipid peroxidation pathway: ACSL4 catalyzes the connection of long-
chain polyunsaturated fatty acids to coenzyme A, and LPCAT3 promotes esterification and the incorporation of these products into membrane phospho-
lipids (PL). PUFA-containing PL is oxidized by the iron-dependent enzymes LOX or POR, leading to lipid peroxidation, membrane damage, and subsequent 
ferroptosis. ③ Overexpression of nuclear receptor coactivator 4 increases intracellular LIP by increasing ferritin degradation. The increased intracellular 
LIP can generate free radicals (hydroxyl radicals) through the Fenton reaction and participate in the peroxidation reaction of phospholipids to generate 
PLOOH. Most intracellular production of reactive oxygen species is iron-catalyzed. The production of ROS triggers lipid peroxidation and ultimately leads to 
ferroptosis. ACSL4, acyl-CoA synthetase long chain family member 4; CoA, coenzyme A; GPX4, glutathione peroxidase 4; GSH, glutathione; GSR, glutathione-
disulfide reductase; GSSG, glutathione oxidized; LIP, labile iron pool; LOX, lipoxygenase; PL, phospholipid; PLOH, phospholipid alcohol; PLOOH, phospholipid 
hydroperoxide; POR, cytochrome P450 oxidoreductase; PUFA, polyunsaturated fatty acid; ROS, reactive oxygen species; xCT, cystine/glutamate antiporter.
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Furthermore, results from tumor xenograft models indicate that 
ATF2 knockdown can effectively enhance sorafenib sensitivity in 
vivo.24 Heat shock protein (HSP) overexpression inhibits erastin-
mediated ferroptosis by reducing cellular iron uptake and lipid 
ROS production.38 HSP regulates GPX4 degradation by inducing 
chaperone-mediated autophagy and plays a role in necroptosis and 
ferroptosis.39 At the same time, HSP can negatively regulate fer-
roptosis by inhibiting GPX4 degradation.40 Studies have shown 
that heat shock protein family member 1 (HSPH1) is a direct target 
of ATF2 and mainly acts as a molecular chaperone to prevent the 
aggregation of misfolded or unfolded proteins, thus maintaining 
protein homeostasis.41 HSPH1 can also affect sorafenib-induced 
ferroptosis by regulating SLC7A11 stability. Further experiments 
have shown that knocking down HSPH1 can partially negate the 
effect of ATF2 overexpression on sorafenib-induced ferroptosis. 
Both ATF2 and HSPH1 are closely related to chemotherapy resist-
ance in tumor cells. ATF2 knockdown or loss-of-function muta-
tions in HSPH1 significantly increase the sensitivity of colorectal 
cancer and melanoma to oxaliplatin and 5-fluorouracil.24 These 
findings suggest potential targets for overcoming drug treatment 
resistance in gastric cancer. Pathways such as GPX4 and lipid me-
tabolism involved in ferroptosis are relevant to the treatment resist-
ance of gastric cancer.

The role of ferroptosis in treatment resistance in colorectal 
cancer
The prognosis for patients with advanced colorectal cancer is poor 
due to resistance to anticancer drugs. Studies have found that in-
terfering with the lipid metabolism involved in ferroptosis in colo-
rectal cancer cells disrupts the metabolic balance of iron in these 
cells and enhances the chemosensitivity of drug-resistant cancer 

cells.42–44 Ferroptosis plays a crucial role in both chemotherapy 
and targeted therapy.

The role of ferroptosis in chemotherapy resistance in colorectal 
cancer
Research has revealed that cysteine desulfurase (NFS1) deficiency 
synergizes with oxaliplatin to induce ferroptosis, increase intracel-
lular ROS levels, and enhance the sensitivity of colorectal cancer 
cells to oxaliplatin. The KIF20A-NUAK1-PP1β-GPX4 signaling 
pathway can directly or indirectly inhibit ferroptosis in colorec-
tal cancer cells,45 playing an important role in reversing colorectal 
cancer resistance to oxaliplatin. FAM98A, a microtubule-associat-
ed protein involved in cell proliferation and migration, enhances 
the expression of xCT in stress granules, inhibits ferroptosis in 
colorectal cancer cells, and improves the tolerance of colorectal 
cancer to 5-fluorouracil.31 Therefore, inducing ferroptosis through 
various mechanisms may be an effective strategy to overcome re-
sistance to colorectal chemotherapy.

The role of ferroptosis in resistance to targeted therapy in colo-
rectal cancer
Resistance to epidermal growth factor receptor (EGFR) therapy 
limits the effectiveness of EGFR-targeted treatments in colorectal 
cancer. Cetuximab, a monoclonal antibody targeting EGFR, can 
promote RAS-selective lethal 3 (RSL3)-induced ferroptosis by in-
hibiting the nuclear factor erythroid 2-related factor 2/heme oxy-
genase-1 (Nrf2/HO-1) signaling pathway in kirsten rats arcomavi-
ral oncogene homolog (KRAS) mutant colorectal cancer cells.46,47 
Additionally, β-elemene, a compound with broad-spectrum an-
ticancer effects and a new type of FINs, can induce ferroptosis 
and inhibit epithelial-to-mesenchymal transition when combined 
with cetuximab, thereby improving treatment resistance in KRAS-

Table 1.  Specific mechanisms of cell ferroptosis and treatment tolerance in gastrointestinal tumors

Tumor type Key pathways 
to ferroptosis Mechanism Tolerance type Medicine References

Gastric cancer Lipid peroxidation GCN2-eIF2α-ATF4-xCT Chemotherapy Cisplatin Wang et al., 201629

Lipid peroxidation Antioxidase peroxiredoxin 2 Chemotherapy Cisplatin Wang et al., 201629

Lipid peroxidation; 
Inhibit GPX4 activity

SIRT6 Targeted therapy Sorafenib Cai et al., 202134; 
Xu et al., 202224

Lipid peroxidation SLC7A11 Targeted therapy Sorafenib Wang et al., 20169,10; 
Xu et al., 202310

Colorectal 
cancer

Inhibit GPX4 activity KIF20A/NUAK1/PP1β/GPX4 Chemotherapy Oxaliplatin Yang et al., 202131

GPX4 FAM98A Chemotherapy 5-fluorouracil Chen et al., 202021

Liver cancer Lipid peroxidation Metallothionein-1G (MT-1G) Targeted therapy Sorafenib Sun et al., 201630

Iron metabolism miR-23a-3p Targeted therapy Sorafenib Lu et al., 202233

Pancreatic 
Cancer

Inhibit GPX4 activity Activate p22-phox expression Chemotherapy Gemcitabine Sporn et al., 201232

Lipid peroxidation Nuclear translocation of NRF2 
stimulates the production of 
partially encoded enzymes 
to catalyze glutathione 
(GSH) production

Chemotherapy Gemcitabine Sporn et al., 201232

ATF4, activation transcription factor 4; eIF2α, eukaryotic initiation factor 2α subunit; FAM98A, family with sequence similarity 98 member A; GCN2, general control nonderepress-
ible 2; GPX4, glutathione peroxidase 4; KIF20A, kinesin family member 20A; NUAK1, NUAK family kinase 1; PP1β, protein phosphatase 1 beta; SIRT6, recombinant Sirtuin 6; xCT, 
SLC7A11 (solute carrier family 7, (cationic amino acid transporter, y+ system) member 11).
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mutant colorectal cancer cells.48 Vitamin C, an antioxidant that 
can induce oxidative stress at pharmacological doses, disrupts iron 
homeostasis and further increases ROS levels, ultimately leading 
to ferroptosis. The combination of cetuximab and Vitamin C can 
induce ferroptosis and reduce acquired resistance to anti-EGFR 
antibodies.49 Therefore, modulating ferroptosis can reverse the 
treatment resistance effects of cetuximab.

The role of ferroptosis in treatment resistance in pancreatic 
cancer
Pancreatic cancer is often accompanied by lymph node invasion 
or distant organ metastasis at an early stage, with less than 20% of 
patients being eligible for surgical treatment once diagnosed.50 For 
patients with unresectable pancreatic cancer, chemotherapy and 
radiotherapy are currently the main treatments. However, conven-
tional chemotherapy regimens are prone to tumor cell resistance 
and strong chemotherapy side effects in the short term.51 Conse-
quently, the overall effectiveness of pancreatic cancer treatment 
has not improved obviously.52 Previous studies have shown that 
FINS can inhibit pancreatic cancer growth by inducing cellular 
ferroptosis and, when combined with chemotherapy drugs, can in-
crease tumor cell sensitivity to these drugs.53

Gemcitabine induces ROS accumulation during treatment.54 In 
addition, knocking down GPX4 can increase lipid ROS production 
and induce ferroptosis. Gemcitabine can also induce ferroptosis 
by activating p22-phox expression in pancreatic ductal adenocar-
cinoma cells, which leads to NF-kB activation and NADPH oxi-
dase (NOX) derived ROS accumulation. This may further enhance 
sensitivity to chemotherapy drugs. NRF2 is a major regulator of 
antioxidant molecules in cells. The nuclear translocation of NRF2 
stimulates the production of enzymes that catalyze glutathione 
production, thereby reducing ROS levels. This mechanism can im-
prove tumor cell resilience.32 Therefore, combining NRF2 inhibi-
tors with FINS may be a feasible strategy to reduce the resistance 
of pancreatic cancer cells to gemcitabine treatment. In summary, 
inducing ferroptosis through GPX4 and ROS accumulation may 
reverse resistance to chemotherapy drugs, providing a promising 
theoretical basis for the development of new treatments for pan-
creatic cancer. However, the role of ferroptosis in chemotherapy 
resistance in pancreatic cancer still requires further research.

The role of ferroptosis in treatment resistance in cholangio-
carcinoma
Cholangiocarcinoma (CCA) is the second most common primary 
liver tumor after hepatocellular carcinoma.55 Ferroptosis has been 
found to be closely related to the occurrence and development of 
various cancers, including CCA.11,56,57 Therefore, it is important 
to further explore the role of ferroptosis in CCA. Studies have 
found that abnormal expression of iron regulatory proteins is key 
to the development of CCA. Increased iron deposits correlate with 
a worse prognosis. Artemisinin can induce both cell apoptosis and 
ferroptosis in cancer cells by promoting ferritin autophagy and 
increasing intracellular free iron ions. Research by Wanna et al. 
demonstrated that dihydroartemisinin has a strong toxic effect on 
CCA cells, offering a new strategy for treating CCA.58

The role of ferroptosis in treatment resistance in liver cancer
Sorafenib is the first systemic treatment approved for patients with 

advanced liver cancer who are not suitable for surgical resection.59 
However, resistance to sorafenib can affect its efficacy in treating 
liver cancer. Compared with apoptosis inducers, the combined use 
of FINS and sorafenib can induce ferroptosis in liver cancer cells, 
thereby increasing the sensitivity of liver cancer to chemotherapy 
drugs. This ferroptosis mechanism is unique to sorafenib and is 
independent of its kinase inhibitory activity.

Lu et al.33 found that miR-23a-3p negatively regulates 
sorafenib-induced ferroptosis by reducing iron overload and lipid 
peroxidation. Knockout or downregulation of miR-23a-3p sig-
nificantly improved the responsiveness of orthotopic hepatocel-
lular carcinoma (HCC) tumors and HCC cells to sorafenib treat-
ment. Sun et al.60 discovered that upregulating metallothione-1G 
(MT-1G) expression could protect HCC cells from the effects of 
sorafenib and promote cancer progression by inhibiting lipid per-
oxidation-mediated ferroptosis. This study suggests that regulating 
MT-1G expression is a potential therapeutic strategy to overcome 
the acquired resistance of HCC cells to sorafenib. These findings 
provide a promising therapeutic strategy for improving tolerance 
to sorafenib treatment in the future.60,61

The role of ferroptosis in treatment resistance in esophageal 
cancer
Patients with advanced esophageal cancer usually receive concur-
rent chemoradiotherapy and surgery. However, repeated use of 
chemotherapy drugs often leads to the development of treatment 
resistance in tumor cells, resulting in poor prognosis for these pa-
tients. Addressing therapy resistance in esophageal cancer can in-
volve promoting ferroptosis in cells by targeting the system Xc-,62 
GPX4,62 and NRF2, thereby inhibiting tumor proliferation and dif-
ferentiation. Currently, there are few reports on the mechanism of 
ferroptosis in immunotherapy for esophageal cancer. As research 
on immunotherapy progresses, programmed death 1 (PD-1) and 
programmed cell death-ligand 1 (PD-L1) targeted inhibitors have 
been used in the treatment of various tumors, including digestive 
tract tumors such as esophageal cancer, gastric cancer, colorectal 
cancer, and liver cancer. Liu J. et al. concluded that anti-PD-L1 
antibodies can promote ferroptosis in tumor cells through the lipid 
peroxide pathway. Combining anti-PD-L1 antibodies with FINS 
can greatly inhibit tumor growth, with the mechanism related to 
cytotoxicity. T cells release interferon-γ, activate STAT1, inhibit 
xCT expression, and subsequently induce ferroptosis.63 Few 
studies have explored the immunogenicity of esophageal cancer 
cells. Inducing ferroptosis in tumor cells can enhance their immu-
nogenicity, thereby boosting the anti-cancer activity of immune 
cells.64 These mechanisms of ferroptosis and treatment resistance 
in esophageal cancer offer new options and methods for the further 
treatment of patients with advanced esophageal cancer.

Limitations and future perspectives
Current research on ferroptosis and tumors has also been explored 
in other systemic tumors, such as non-small cell lung cancer,65 and 
breast cancer.66–68 The treatment of these tumors primarily utilizes 
ferroptosis-related mechanisms and pathways, including: (1) inhib-
iting the XC-glutathione/GPX4 axis by regulating antioxidants; (2) 
modulating the p62-Keap1-NRF2 pathway and NRF2 downstream 
antioxidant gene expression; (3) activating the ferroptosis axis by 
regulating the functions of lysosomes, ferritin, transferrin, and fer-
rophagosomes. Therefore, ferroptosis plays a crucial role in kill-
ing tumor cells and inhibiting tumor growth. Targeted induction of 
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ferroptosis may be a novel strategy to overcome tumor treatment 
resistance. However, clinical understanding of the factors involved 
in regulating cellular ferroptosis and treatment resistance remains 
limited. As alternative therapeutic targets, a deeper understanding 
of the initiation and transformation of ferroptosis and treatment 
resistance mechanisms in gastrointestinal tumors is needed.

Currently, ferroptosis represents a new clinical treatment direc-
tion and has garnered increasing attention in cancer therapy. De-
spite the growing research on ferroptosis, several issues remain: 
(1) Further exploration is needed to understand the unknown 
and regulatory mechanisms of ferroptosis in tumor treatment re-
sistance; (2) Different tissues exhibit varying sensitivities to fer-
roptosis, making the correct application of ferroptosis in tumor 
treatment an important research direction; (3) Anti-tumor drugs 
are often used in combination, but the antagonistic or synergis-
tic effects of these combinations are not yet fully understood, and 
substantial theoretical research support is still required; (4) While 
some drugs and compounds can induce ferroptosis, and new drug 
delivery systems such as exosomes and nanotechnology are being 
explored, clinical application remains a challenge. Further explo-
ration and effort from scholars are needed.

The detection and application of ferroptosis in tumor drug re-
sistance are crucial. Ongoing research and detection methods re-
lated to ferroptosis provide valuable tools for understanding and 
intervening in this process. For example, measuring the levels of 
specific lipid peroxides within cells, such as malondialdehyde and 
4-hydroxynonenal, can help assess ferroptosis.69 Additionally, de-
tecting the activity of enzymes associated with ferroptosis, such 
as GPX4, is an important indicator of ferroptosis occurrence. The 
release of cytochrome C, changes in mitochondrial membrane 
potential,70 and increases in intracellular iron ion levels are also 
key events in ferroptosis, detectable through biochemical experi-
ments.71 Techniques such as flow cytometry, fluorescence micros-
copy,72 and Western blotting are widely used for detecting fer-
roptosis.73,74 Although there is currently no single gold standard 
for detecting ferroptosis, combining these methods can provide 
a more comprehensive assessment. Future research may uncover 
new biomarkers and detection technologies, further improving 
the accuracy of ferroptosis detection and its clinical application 
feasibility.

Conclusions
We anticipate seeing more meaningful clinical and basic research 
in the near future. These studies will enhance our understanding 
of resistance mechanisms to ferroptosis reversal therapy and lead 
to more effective cancer treatments, thereby reducing the disease 
burden on patients and improving their quality of life.
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